• English
    • Bahasa Indonesia
  • English 
    • English
    • Bahasa Indonesia
  • Login
View Item 
  •   DSpace Home
  • UPHS Journal
  • Gema Aktualita
  • Vol. 5 No. 1 Juni 2016
  • View Item
  •   DSpace Home
  • UPHS Journal
  • Gema Aktualita
  • Vol. 5 No. 1 Juni 2016
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimasi Conjugate Gradient Pada Algoritma Backpropagation Neural Network Untuk Prediksi Kurs Time Series

Thumbnail
View/Open
Optimasi Conjugate Gradient Pada Algoritma Backpropagation Neural Network Untuk Prediksi Kurs Time Series.pdf (226.7Kb)
Date
2016-06-01
Author
Sari, Yuslena
Metadata
Show full item record
Abstract
This paper investigates the use of methods of propagation neural network to forecast the rupiah against the dollar in time series . Data is divided into two parts , namely the training data test data . Having obtained the best weight training results data then after that test data is used to see the results of MSE . Training algorithm uses basic backpropagation gradient descent algorithm and then optimized using the conjugate gradient . The results show the value of the basic algorithm backpropogation MSE gradient descent and conjugate gradient of 1.02159 mengsilkan MSE of 0.0198012 . From these results indicate conjugate gradient algorithm produces smaller error.
URI
http://hdl.handle.net/123456789/901
Collections
  • Vol. 5 No. 1 Juni 2016

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV